Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.

نویسندگان

  • Sara E Blumer-Schuette
  • Inci Ozdemir
  • Dhaval Mistry
  • Susan Lucas
  • Alla Lapidus
  • Jan-Fang Cheng
  • Lynne A Goodwin
  • Samuel Pitluck
  • Miriam L Land
  • Loren J Hauser
  • Tanja Woyke
  • Natalia Mikhailova
  • Amrita Pati
  • Nikos C Kyrpides
  • Natalia Ivanova
  • John C Detter
  • Karen Walston-Davenport
  • Shunsheng Han
  • Michael W W Adams
  • Robert M Kelly
چکیده

The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Genome Sequences of Caldicellulosiruptor sp. Strain Rt8.B8, Caldicellulosiruptor sp. Strain Wai35.B1, and “Thermoanaerobacter cellulolyticus”

The genus Caldicellulosiruptor contains extremely thermophilic, cellulolytic bacteria capable of lignocellulose deconstruction. Currently, complete genome sequences for eleven Caldicellulosiruptor species are available. Here, we report genome sequences for three additional Caldicellulosiruptor species: Rt8.B8 DSM 8990 (New Zealand), Wai35.B1 DSM 8977 (New Zealand), and "Thermoanaerobacter cellu...

متن کامل

Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria

BACKGROUND Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermo...

متن کامل

Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass.

Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretrea...

متن کامل

Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity

BACKGROUND Caldicellulosiruptor species have gained a reputation as being among the best microorganisms to produce hydrogen (H2) due to possession of a combination of appropriate features. However, due to their low volumetric H2 productivities (Q H2), Caldicellulosiruptor species cannot be considered for any viable biohydrogen production process yet. In this study, we evaluate biofilm forming p...

متن کامل

Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov.

The thermophilic, cellulolytic, anaerobic bacterium 'Anaerocellum thermophilum' strain Z-1320 was isolated from a hot spring almost two decades ago and deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ) as DSM 6725. The organism was classified as representing a new genus, 'Anaerocellum', primarily on its growth physiology, cell-wall type and morphology. The results of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 193 6  شماره 

صفحات  -

تاریخ انتشار 2011